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INTRODUCTION

In a pioneering exiental work, Papamoschou and Roshko studied the
growth characteristics of 3-D supesonic free shear layers [Ref. 1]. One of the
conclusions of their study was that-D supersonic shear layers Aasymptotically

approach a growth rate equal to 30% of that of subsonic shear layers. In an
attempt to explain this phenomena, a series of analytical [Ref. 2,3], experimental

-[Ref.- 4] and computational studies e.-5,6 have recently been carried out.
Many of these studies focused on 2-D supersonic shear layers. In these studies,

and in particular, studies based on stability analysis of 2-1 supersonic shear
layers, it was found that the shear layer growth rate approaches zero (and not the

30% pbserved R as the convective Mach number of the shear layer

increased from subsonic and supersonic.

Several theories have been proposed to explain the discrepancies between
2-D analyses and 3-0 observations. Some of the theories are:

a) Effects of 3-D disturbances and 3-D Vortical structures on Shear Layer Growth:
3-D stability analysas such as those in Ref. 7 suggest that the 3-0 shear layer
growth may be caused by growth of 3-0 unstable modes of the shear layer.

These 3-0 modes contribute to the shear layer growth even as the convective

Mach number increases, whereas 2-0 modes become less effective.

b) Effects of Walls on the Shear Layer Growth: Tam et al. [Ref. 3] and others have
studied 2-D and 3-0 confined shear layers within rectangular channels. They
iound that the coupling between the shear layer and the acoustic modes of the

channel give rise to new modes of instability, which may contribute to the growth

rate of 3-D shear layers. For

The objective of this research is to study the stability and growth d

characteristics of 3-D free shear layers through a numerical solution of the 3-D Ion
unsteady, compressible Navier-Stokes equations. A general solution procedure
has been constructed that may be used to study the temporal and spatial growth ,

of 2-0 and 3-D waves, to study the effects of random initial disturbances on the ity Codes
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shear layer growth and to study the effects of wall on the shear layer growth. This
procedure thus complements the well developed techniques of linear stability
analysis, and allows one to study additional non-linear phenomena such as
saturation of modes, vortex pairing phenomena etc.

The solution procedure is a straight forward extension of the 2-D
compressible Navier-Stokes solver documented in Ref. 6 to 3-D compressible
Navier-Stokes equations. The solution procedure is second order accurate in
time, and fourth order accurate in space. The computer code has been vectorized
to perform efficiently on the Cray YMP and Cray 2 class of machines, and should
lend itself to efficient implementation on massively parallel machine architectures.

WORK PERFORMED THROUGH THE REPORTING PERIOD

As a first application of the 3-D shear layer analysis, the temporal growth of
a shear layer confined between walls was studied. The velocity, density and
temperature profiles for the mean flow was chosen to be

u(y) = U tanh(y)

v(y) = 0.0

w(y) = 0.0

p (Y) P REF

T(y) = TREF

Note that this initial condition corresponds to a shear layer formed at the
juncture of two parallel streams of speed U, moving in opposite directions. By
changing the velocity U and reference temperature TREF, the Mach numbers on
either side of the shear layer, and hence the "convective" Mach number may be
changed. Also note that the reference length used here is the vorticity thickness of
the shear layer and equals unity. A uniformly spaced Cartesian grid of size 121 x
31 x 31 was used.



The boundary conditions are as follows. At the upstream and downstream
boundaries, the flow was assumed to be periodic. The length of the domain in the
x- direction was chosen to be equal to the wave length of the most amplified
temporal wave as reported by Michalke, equal to 15.5. The lateral boundaries
were 3 unit lengths apart, and periodic boundary conditions were applied at these
boundaries as well. At the top and bottom boundaries, located +3 and -3 units
away, slip boundary conditions were applied. That is, the normal component of
velocity at these boundaries was zero, while the derivatives of the tangential
components of velocity, the density and pressure were all set to zero.

A random initial disturbance field was next superposed on the mean flow
field defined earlier. This random disturbance field was generated using a random
number generator, and its magnitude at any point in the flow field was restricted
to be less than 3% of the speed of sound. These disturbances were imposed on
the interior nodes as well as the boundary nodes, but were confined to regions of
significant vorticity in the shear layer, by multiplying the computed random

disturbance by the function [1-(y/Y) 2 ] where Y is the y- location where u(y)
equals 0.25U.

Calculations are first carried out for 1000 to 2000 time steps in an inviscid
mode in an attempt to let these disturbances grow to sizeable values before
turning on the viscous terms. Then calculations are carried out for an additional

10,000 iterations in the viscous mode. The computed flow field is analyzed at
selected time level to monitor the streamwise and spanwise vorticity fields, and to
compute the average turbulent kinetic energy within the flow field. To date,
calculations have been carried out for 3 convective Mach numbers, 0.2, 0.4 and
0.6.

Figure 1 shows the time evolution of the streamwise (x- component) and
spanwise (y-component) of the vorticity field for M =0.2 case. It is seen that the

vorticity field at initial time levels is totally random. At later time levels, organized
vorticity fields begin to evolve, both for the x- and the y- component. These
vorticity fields continue to change from time step to time step, and do not reach a
limit cycle value. Figures 2 and 3 show the vorticity fields at later time levels for

convective Mach numbers 0.4 and 0.6. Again, organized vortical structures are
evident.



There is a need to analyze these vorticity fields further to see if they contain

dominant 2-D and 3-D modes. It will also be useful to determine if these modes

compare well with linear stability analysis, particularly during the early periods of

growth.

The average turbulent kinetic energy (equal to the local turbulent kinetic

energy at all nodes summed up and averaged) continues to grow with time.

Figure 4 shows the normalized average turbulent kinetic energy (normalized by U)

as a function of non-dimensional time (Normalized by U and vorticity thickness). It
is observed that the shear layer turbulent kinetic energy growth with time slows

down as the convective Mach number goes from 0.2 to 0.6. This is in agreement

with stability analyses for confined and free shear layers.

WORK TO BE PERFORMED DURING THE NEXT REPORTING PERIOD

During the next reporting period, the following calculations will be carried

out:

a) As stated earlier, the computed velocity and vorticity fields will be

compared with 3-D stability analyses to see if these two techniques predict the

same behavior for the disturbance growth in time, at least during the early periods

of time.

b) The computed flow fields will be analyzed, and additional calculations

will be carried out to determine if 3-D (spanwise, and oblique) modes become

more important as the convective increases.

c) In cooperation with Dr. C. Tam of Florida State University, calculations

are planned for a spatially growing supersonic shear layer in a rectangular

channel. At the upstream boundary, 2-D and 3-D modes will be imposed on the
mean flow. Their linear growth at early time levels, and any non-linear interactions

between the modes and with the acoustic modes of tie so!id wall will be analyzed.
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